
Distributed Application Framework for Earth Science Data Processing

Petr Votava, Rama Nemani, Chad Bowker, Andrew Michaelis,
Andrew Neuschwander

Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT 59812

Joseph Coughlan
NASA Ames Research Center, Moffett Field, CA 94035

Abstract – One of the characteristics of Earth Science data is
their diversity, which results in a large number of similar
algorithms tailored to a specific data set. Moreover, it is often
difficult to connect several algorithms in a “pipeline” where
output of one is the input of the other. The solution we propose
in this paper is a flexible and an extensible framework that
enables us to decouple the data from the application and lay the
foundation for integration of several algorithms into a single
system.

I. INTRODUCTION

One of the characteristics of earth science data is their

diversity, which results in a large number of similar
algorithms tailored to a specific data set. This approach is not
very efficient, yet it is often deployed in both small and large
projects. Additionally, it is often hard to integrate dependent
algorithms in which output of one of the algorithms is input
of the next, especially if these were not developed by the
same team. Our design addresses these issues by providing a
framework for integration of dependent earth science data
processing algorithms and for their generalization.

An important feature of the application framework is the

decoupling of the data from the algorithms using metadata
descriptions. Since the input data can come in many different
formats, we are developing a common set of FGDC-
compliant [1] metadata to provide a standard description of
the data content, including projection, data types, fill values,
etc. Metadata is stored in XML [2] format, and the data we
use internally is in HDF5 [3] format. Rather than rewriting
the data processing algorithms to fit the appropriate data set,
we implement filters that preprocess the data to the format
required by the algorithms. This facilitates faster
development and encourages code re-use.

Many Earth science algorithms are very complex, but they

also often have only a small degree of spatial dependency and
thus are ideal for parallel processing. We utilize the
distributed features of the Java [4] programming language to
accommodate parallel processing. With our framework we
can build flexible and scalable processing “pipelines” that
include preprocessing, processing and automated result
analysis as independent modules. This gives us the flexibility
to add and remove modules on the fly, as well as re-use

existing code, and thus enables us to concentrate more on the
science itself rather than on system integration. Finally, we
implement a batch mode so that the system can run without
user interventions for long periods of time, providing the
scientists with an automated way to obtain the results they
need quickly and efficiently.

The remainder of the paper is organized as follows. Section

2 provides information on the data description scheme.
Section 3 describes the distributed system architecture.
Section 4 gives 2 examples of current deployment of the
framework in our TOPS [5] and MODISWeb [6] systems.
We conclude with a discussion of future work.

II. DATA DESCRIPTIONS

In order for an application to be able to handle multiple

data formats in a flexible way, it needs to obtain detailed
information about the data – this information can range from
data type to distribution information. Because the data vary
so greatly in their formats, from ASCII and simple binary, to
Hierarchical Data Format (HDF) and HDF-EOS, we had to
find a metadata scheme that would be capable of including all
the different datasets that are of interest to the Earth science
community. We have decided to use metadata standard
developed by the Federal Geographic Data Committee
(FGDC) [1]. The standard specifies a generic framework that
can be used to describe any geospatial data with regard to the
following aspects: Identification, Data Quality, Spatial Data
Organization, Spatial Reference, Entity and Attribute
Information, Distribution, and Metadata Reference. The
standard also specifies which of the above sections are
mandatory and which are optional. This simplifies greatly the
data descriptions in case of simple data sets when not all the
information has to be included, but remains very expressive
in description of complex data sets. FGDC also provides a set
of tools for checking that metadata conforms to the
specifications, and for conversion to XML [2] and HTML [7]
formats.

Since main parts of our application framework are written

in Java, we have decided to use XML for the metadata
implementation, because Java provides extensive support for

handling of XML documents. It is the Java and XML
combination that brings the flexibility and extensibility into
the design of the application framework.

Fig. 1. shows the situation where application is not aware

of the format of the input data. It simply makes a request to
the Data Broker object with regard to the type of the data and
its location, and it receives the data. Where the data comes
from depends on the particular inputs available to the system
at that time. This is very useful for evaluating and testing of
new algorithms and data streams, where we want to be able to
use the same algorithm with two different input data streams
without having to deal with the different data formats at the
science algorithm level. This provides for faster algorithm
development cycle, and the ability of the scientist to
concentrate more on the science of the algorithm, rather than
input data formats. One thing to notice is that FGDC
metadata standard also addresses the aspect of the quality of
the data, so the application has an access not only to the data
itself, but also to its QA information that at times is required
in Earth science algorithms. An example QA usage is
information whether a particular pixel contained any clouds.

Because the Data Broker knows all the relevant

information about the data, it is able not only to obtain the
data, but also to perform simple transformations. Examples of
such transformations are reprojection, subsetting, or
resolution adjustments; these can be specified as additional
parameters during calls to the Data Broker object.

Data Broker

LaiAlgorithm

getPixel("VI", x, y)

MODIS VI AVHRR VI

calculateLai(vi, landcover, x, y)

getPixel("LANDCOVER", x, y)

MODIS Landcover

Fig. 1. Application independent of its input data representation

There are two types of data that the framework must be
able to handle – external that are coming from outside of the
system, and internal that are produced by the system. While
we have little control over the external data and their formats
besides creating the FGDC-compliant metadata descriptions,
we have decided to use HDF5 [3] for internal data
representation. HDF5 is the latest version of the Hierarchical
Data Format that provides better support for Java and new
internal organization that is very suitable for our applications.

III. DISTRIBUTED FRAMEWORK ARCHITECTURE

One of the many aspects of the Earth science data
processing is the volume of the data. This fact together with
time complexity of some of the algorithms led us to provide
mechanisms for parallel execution of the data processing
whenever possible. For example, a task of creating images of
continental US from MODIS [8] data involves reprojecting,
mosaicing, subsampling and image conversion of the data.
The MODIS data comes in the form of tiles (continental US
consists of about 20 tiles) that, at least during part of the
processing, are independent of each other. The part of the
system that handles the parallelism is the scheduler. The
user/developer submits a request to the scheduler describing
what he/she wants to accomplish and how, and the scheduler
will load appropriate algorithm modules, I/O modules, and
setup the execution sequence that corresponds to the user’s
requirements, executing moduless in parallel whenever
possible. In the example above, the scheduler would execute
all the reprojection processes in parallel with synchronization
point before entering the mosaicing process. Fig. 2. illustrates
this process.

The implementation of the execution environment is done

by facilities of Java RMI [9]. Each algorithm object has to
implement a JobInterface, and provide the code for execute()
method of the class. This object is than passed to the
scheduler, which in turn forwards it to one of the execution
servers. The execution server calls the execute() method
provided by the object and returns the results of the execution
to the caller. The algorithms themselves are often
implemented in C or C++ and we use the Java Native
Interface (JNI) [10] to make calls to the shared libraries that
contain the appropriate modules.

IV. TOPS AND MODISWeb EXAMPLES

We are currently using out application framework on two

different systems. First, there is the Terrestrial Observation
and Prediction System (TOPS) [5]. TOPS is a very good case
study for this framework, because it consists of large number
of differently formatted inputs (HDF-EOS, wgrib, ASCII,
binary) and it requires several algorithms to be run on
different inputs before they can be used by the main compute

Obtain all MODIS Tiles

Reproject Tile 1 Reproject Tile 2 ...

Mosaic Tiles (1, 2, ... n)

WAIT

Reproject Tile n

Create JPEG

Fig. 2. Parallel processing of MODIS tiles in MODISWeb

engine. At the writing of this paper parts of TOPS are still in
experimental stage, but intermediate results suggest that the
flexibility in the application framework will enable us to use
TOPS for near-real-time forecasting with failover input feeds.

Second project that uses the application framework is the
MODISWeb, which is an automated image utility. MODIS
data are processed for 17 different scenes around the world in
3 different resolutions and posted on the project Web site.
The MODIS tiles for each of the scenes are reprojected,
mosaiced, subsetted, and converted to a JPEG image. As the
last step, the process updates a database that is used to
dynamically load the created images by the Web server. This
project is currently in beta stage and the resulting images are
being posted to http://images.ntsg.umt.edu.

V. FUTURE WORK

We are currently adding functionality into the framework

to support improved feedback and analysis of results through
data mining and machine learning. This will help us to
dynamically improve some of our forecasting models by
evaluating the results of our forecasts against real data. We
are also adding a planner that will help the scheduler decide
on the sequence of actions based on specified goals. Finally,
we are starting to design a natural language interface as the
front end of the framework that would enable us to query the
system with questions of the type: “What is the flood danger
for Missoula valley in May 2002?”

ACKNOWLEDGMENT

The Distributed Application Framework project has been

funded by NASA IDU program.

REFERENCES

[1] Federal Geographic Data Committee, “Content standard for digital

geospatial metadata workbook version 2.0”, FGDC, May 2000.
[2] World Wide Web Consortium, “XML: Extensible Markup Language”,

W3C, http://www.w3.org/XML
[3] The National Center for Supercomputing Applications, “HDF5 abstract

data model“, presented to NASA EOS/HDF Workshop, September
1999.

[4] K. Arnold, J. Gosling and D. Holmes, The Java Programming Language
Third Edition, Palo Alto, CA: Addison Wesley, 2000.

[5] R. R. Nemani., M.A. White, P. Votava, J. Glassy, J. Roads and S.W.
Running, “Biospheric forecasting system for natural resource
management”, Proceedings of the 4th International Conference on
Integrating GIS and Environmental Modeling (GIS/EM4): Problems,
Prospects and Research Needs, Banff, Alberta, Canada, September 2-8,
2000, pg44-52.

[6] MODISWeb, http://images.ntsg.umt.edu
[7] World Wide Web Consortium, “Hypertext MarkupLlanguage”, W3C,

http://www.w3.org/MarkUp
[8] C. Justice at al., “The Moderate Resolution Imaging Spectroradiometer

(MODIS): Land remote sensing for global change research”, IEEE
Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249,
1998.

[9] E.Pitt, K. McNiff, java.rmi: The Remote Method Invocation Guide,
Addison Wesley, 2001.

[10] R. Gordon, Essential JNI: Java Native Interface, Prentice Hall, 1998.

